分析您的 PyTorch 模块
PyTorch 包含一个探查器 API,可用于识别代码中各种 PyTorch 操作的时间和内存成本。 Profiler 可以轻松集成到您的代码中,结果可以打印为表格或在 JSON 跟踪文件中显示。
注意
Profiler 支持多线程模型。 Profiler 与该操作在同一线程中运行,但它还将对可能在另一个线程中运行的子运算符进行概要分析。 同时运行的探查器的作用域将限制在其自己的线程中,以防止结果混淆。
转到此秘籍,可以更快地了解 Profiler API 的用法。
使用 Profiler 的性能调试
Profiler 有助于识别模型中的性能瓶颈。 在此示例中,我们构建了一个自定义模块,该模块执行两个子任务:
- 输入的线性变换,以及
- 使用转换结果来获取遮罩张量上的索引。
我们使用profiler.record_function("label")
将每个子任务的代码包装在单独的带标签的上下文管理器中。 在事件探查器输出中,子任务中所有操作的综合性能指标将显示在其相应的标签下。
请注意,使用 Profiler 会产生一些开销,并且最好仅用于调查代码。 如果要对运行时进行基准测试,请记住将其删除。
class MyModule(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool = True):
super(MyModule, self).__init__()
self.linear = nn.Linear(in_features, out_features, bias)
def forward(self, input, mask):
with profiler.record_function("LINEAR PASS"):
out = self.linear(input)
with profiler.record_function("MASK INDICES"):
threshold = out.sum(axis=1).mean().item()
hi_idx = np.argwhere(mask.cpu().numpy() > threshold)
hi_idx = torch.from_numpy(hi_idx).cuda()
return out, hi_idx
分析正向传播
我们初始化随机输入和蒙版张量以及模型。
在运行探查器之前,我们需要对 CUDA 进行预热,以确保进行准确的性能基准测试。 我们将模块的正向传播包装在profiler.profile
上下文管理器中。 with_stack=True
参数在跟踪中附加操作的文件和行号。
警告
with_stack=True
会产生额外的开销,并且更适合于研究代码。 如果要对性能进行基准测试,请记住将其删除。
model = MyModule(500, 10).cuda()
input = torch.rand(128, 500).cuda()
mask = torch.rand((500, 500, 500), dtype=torch.double).cuda()
# warm-up
model(input, mask)
with profiler.profile(with_stack=True, profile_memory=True) as prof:
out, idx = model(input, mask)
打印分析器结果
最后,我们打印分析器结果。 profiler.key_averages
通过运算符名称,以及可选地通过输入形状和/或栈跟踪事件来聚合结果。 按输入形状分组有助于识别模型使用哪些张量形状。
在这里,我们使用group_by_stack_n=5
通过操作及其回溯(截断为最近的 5 个事件)聚合运行时,并按事件注册的顺序显示事件。 还可以通过传递sort_by
参数对表进行排序(有关有效的排序键,请参阅文档)。
注意
在笔记本中运行 Profiler 时,您可能会在栈跟踪中看到<ipython-input-18-193a910735e8>(13): forward
之类的条目,而不是文件名。 这些对应于<notebook-cell>(line number): calling-function
。
print(prof.key_averages(group_by_stack_n=5).table(sort_by='self_cpu_time_total', row_limit=5))
"""
(Some columns are omitted)
------------- ------------ ------------ ------------ ---------------------------------
Name Self CPU % Self CPU Self CPU Mem Source Location
------------- ------------ ------------ ------------ ---------------------------------
MASK INDICES 87.88% 5.212s -953.67 Mb /mnt/xarfuse/.../torch/au
<ipython-input-...>(10): forward
/mnt/xarfuse/.../torch/nn
<ipython-input-...>(9): <module>
/mnt/xarfuse/.../IPython/
aten::copy_ 12.07% 715.848ms 0 b <ipython-input-...>(12): forward
/mnt/xarfuse/.../torch/nn
<ipython-input-...>(9): <module>
/mnt/xarfuse/.../IPython/
/mnt/xarfuse/.../IPython/
LINEAR PASS 0.01% 350.151us -20 b /mnt/xarfuse/.../torch/au
<ipython-input-...>(7): forward
/mnt/xarfuse/.../torch/nn
<ipython-input-...>(9): <module>
/mnt/xarfuse/.../IPython/
aten::addmm 0.00% 293.342us 0 b /mnt/xarfuse/.../torch/nn
/mnt/xarfuse/.../torch/nn
/mnt/xarfuse/.../torch/nn
<ipython-input-...>(8): forward
/mnt/xarfuse/.../torch/nn
aten::mean 0.00% 235.095us 0 b <ipython-input-...>(11): forward
/mnt/xarfuse/.../torch/nn
<ipython-input-...>(9): <module>
/mnt/xarfuse/.../IPython/
/mnt/xarfuse/.../IPython/
----------------------------- ------------ ---------- ----------------------------------
Self CPU time total: 5.931s
"""
提高内存性能
请注意,就内存和时间而言,最昂贵的操作位于forward (10)
,代表掩码索引中的操作。 让我们尝试先解决内存消耗问题。 我们可以看到第 12 行的.to()
操作消耗 953.67 Mb。 该操作将mask
复制到 CPU。 mask
使用torch.double
数据类型初始化。 我们可以通过将其转换为torch.float
来减少内存占用吗?
model = MyModule(500, 10).cuda()
input = torch.rand(128, 500).cuda()
mask = torch.rand((500, 500, 500), dtype=torch.float).cuda()
# warm-up
model(input, mask)
with profiler.profile(with_stack=True, profile_memory=True) as prof:
out, idx = model(input, mask)
print(prof.key_averages(group_by_stack_n=5).table(sort_by='self_cpu_time_total', row_limit=5))
"""
(Some columns are omitted)
----------------- ------------ ------------ ------------ --------------------------------
Name Self CPU % Self CPU Self CPU Mem Source Location
----------------- ------------ ------------ ------------ --------------------------------
MASK INDICES 93.61% 5.006s -476.84 Mb /mnt/xarfuse/.../torch/au
<ipython-input-...>(10): forward
/mnt/xarfuse/ /torch/nn
<ipython-input-...>(9): <module>
/mnt/xarfuse/.../IPython/
aten::copy_ 6.34% 338.759ms 0 b <ipython-input-...>(12): forward
/mnt/xarfuse/.../torch/nn
<ipython-input-...>(9): <module>
/mnt/xarfuse/.../IPython/
/mnt/xarfuse/.../IPython/
aten::as_strided 0.01% 281.808us 0 b <ipython-input-...>(11): forward
/mnt/xarfuse/.../torch/nn
<ipython-input-...>(9): <module>
/mnt/xarfuse/.../IPython/
/mnt/xarfuse/.../IPython/
aten::addmm 0.01% 275.721us 0 b /mnt/xarfuse/.../torch/nn
/mnt/xarfuse/.../torch/nn
/mnt/xarfuse/.../torch/nn
<ipython-input-...>(8): forward
/mnt/xarfuse/.../torch/nn
aten::_local 0.01% 268.650us 0 b <ipython-input-...>(11): forward
_scalar_dense /mnt/xarfuse/.../torch/nn
<ipython-input-...>(9): <module>
/mnt/xarfuse/.../IPython/
/mnt/xarfuse/.../IPython/
----------------- ------------ ------------ ------------ --------------------------------
Self CPU time total: 5.347s
"""
此操作的 CPU 内存占用量减少了一半。
提高时间表现
虽然所消耗的时间也有所减少,但仍然太高。 原来,将矩阵从 CUDA 复制到 CPU 非常昂贵! forward (12)
中的aten::copy_
运算符将mask
复制到 CPU,以便可以使用 NumPy argwhere
函数。 forward(13)
处的aten::copy_
将数组作为张量复制回 CUDA。 如果我们在这里使用torch
函数nonzero()
,则可以消除这两个方面。
class MyModule(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool = True):
super(MyModule, self).__init__()
self.linear = nn.Linear(in_features, out_features, bias)
def forward(self, input, mask):
with profiler.record_function("LINEAR PASS"):
out = self.linear(input)
with profiler.record_function("MASK INDICES"):
threshold = out.sum(axis=1).mean()
hi_idx = (mask > threshold).nonzero(as_tuple=True)
return out, hi_idx
model = MyModule(500, 10).cuda()
input = torch.rand(128, 500).cuda()
mask = torch.rand((500, 500, 500), dtype=torch.float).cuda()
# warm-up
model(input, mask)
with profiler.profile(with_stack=True, profile_memory=True) as prof:
out, idx = model(input, mask)
print(prof.key_averages(group_by_stack_n=5).table(sort_by='self_cpu_time_total', row_limit=5))
"""
(Some columns are omitted)
-------------- ------------ ------------ ------------ ---------------------------------
Name Self CPU % Self CPU Self CPU Mem Source Location
-------------- ------------ ------------ ------------ ---------------------------------
aten::gt 57.17% 129.089ms 0 b <ipython-input-...>(12): forward
/mnt/xarfuse/.../torch/nn
<ipython-input-...>(25): <module>
/mnt/xarfuse/.../IPython/
/mnt/xarfuse/.../IPython/
aten::nonzero 37.38% 84.402ms 0 b <ipython-input-...>(12): forward
/mnt/xarfuse/.../torch/nn
<ipython-input-...>(25): <module>
/mnt/xarfuse/.../IPython/
/mnt/xarfuse/.../IPython/
INDEX SCORE 3.32% 7.491ms -119.21 Mb /mnt/xarfuse/.../torch/au
<ipython-input-...>(10): forward
/mnt/xarfuse/.../torch/nn
<ipython-input-...>(25): <module>
/mnt/xarfuse/.../IPython/
aten::as_strided 0.20% 441.587us 0 b <ipython-input-...>(12): forward
/mnt/xarfuse/.../torch/nn
<ipython-input-...>(25): <module>
/mnt/xarfuse/.../IPython/
/mnt/xarfuse/.../IPython/
aten::nonzero
_numpy 0.18% 395.602us 0 b <ipython-input-...>(12): forward
/mnt/xarfuse/.../torch/nn
<ipython-input-...>(25): <module>
/mnt/xarfuse/.../IPython/
/mnt/xarfuse/.../IPython/
-------------- ------------ ------------ ------------ ---------------------------------
Self CPU time total: 225.801ms
"""
进一步阅读
我们已经看到了 Profiler 如何用于调查 PyTorch 模型中的时间和内存瓶颈。 在此处阅读有关 Profiler 的更多信息:
脚本的总运行时间:(0 分钟 0.000 秒)
由 Sphinx 画廊生成的画廊